The Global Rise of Corporate Saving

Peter Chen
University of Chicago

Loukas Karabarbounis University of Minnesota Brent Neiman
University of Chicago

January 2017

This paper

- Global rise of corporate saving and net lending.
 - reflects decline in labor share and stability of dividend share

This paper

- Global rise of corporate saving and net lending.
 - reflects decline in labor share and stability of dividend share
- Increase observed within many countries, industries, and firms.
 - global common and not idiosyncratic country or industry factors

This paper

- Global rise of corporate saving and net lending.
 - reflects decline in labor share and stability of dividend share
- Increase observed within many countries, industries, and firms.
 - global common and not idiosyncratic country or industry factors
- Model assigns important role to decline in cost of capital.
 - global declines in interest rate, investment prices, corporate taxes

National Accounts Data

Data from national accounts

- Sources: UN and OECD.
- Sectors: corporate, household, government.
- Sample starts in 1980 with 8 countries.
- By 2007 we have over 60 countries and 85% of global GDP.

Key identities

Global saving and investment

Saving rates by sector

Trend in corporate saving rate by country

Decomposition of corporate gross value added

- "Taxes" equals taxes on production and taxes on profits.
- "Payments to capital" equals dividends, interest, and transfers.

Components of corporate value added

Summary of macro facts

- Corporate saving rise relative to GDP, total saving, corporate GVA.
- Corporate sector has become net lender of funds.
- Rise of corporate saving broad-based across countries.
- Proximate cause is decline in labor share.

Firm-Level Data

Data at the firm level

- Sources: Compustat Global and North America.
- Differences from national accounts:
 - Focus on non-financial firms.
 - Activity by country of headquarters instead of operation.
 - Second Listed firms.

$$\begin{array}{rcl} \mathsf{Intermediates}_{f,c,i,t} &=& \underbrace{\mathsf{Oper.} \; \mathsf{Exp.}_{f,c,i,t} - \mathsf{Depr.}_{f,c,i,t} - \mathsf{R\&D}_{f,c,i,t}}_{\mathsf{Available} \; \mathsf{in} \; \mathsf{Compustat}} \\ &-& \underbrace{\mathsf{Compensation}_{f,c,i,t} - \mathsf{Production} \; \mathsf{Taxes}_{f,c,i,t}}_{\mathsf{Not} \; \mathsf{Available} \; \mathsf{in} \; \mathsf{Compustat}} \end{aligned}$$

$$\pi_{c,i,t} = \frac{\mathsf{Intermediates}_{c,i,t}}{\mathsf{Intermediates}_{c,i,t} + \mathsf{Not Available}_{c,i,t}}.$$
 (3)

Intermediates_{$$f,c,i,t$$} = Oper. $\exp_{f,c,i,t} - \operatorname{Depr}_{f,c,i,t} - \operatorname{R\&D}_{f,c,i,t}$ (2)

Available in Compustat

Compensation _{f,c,i,t} - Production $\operatorname{Taxes}_{f,c,i,t}$.

Not Available in Compustat

$$\pi_{c,i,t} = \frac{\mathsf{Intermediates}_{c,i,t}}{\mathsf{Intermediates}_{c,i,t} + \mathsf{Not Available}_{c,i,t}}.$$
 (3)

$$\mathsf{GVA}_{f,c,i,t} = \mathsf{Sales}_{f,c,i,t} - \pi_{c,i,t} \times \mathsf{Available}_{f,c,i,t}. \tag{4}$$

other variables

Corporate saving rates (non-financials)

• firm data includes 60% of global non-financial corporate GVA

Trends in saving rates by industry (p.p. per 10 years)

Industry	Saving Rate	Net Lending Rate	
Agriculture and Mining	3.20	-1.00	
Construction	0.41	0.70	
Information and Communications	-3.40	1.80	
Total Manufacturing	1.95	1.49	
Chemical, Petro, and Coal	1.01	0.24	
Electronics and Electrical	2.79	4.53	
Transportation Equipment	1.94	0.60	
Rubber, Plastic, Glass, Metal	0.77	0.30	
Other Manufacturing	2.12	1.78	
Services	2.43	4.44	
Transportation	-1.83	-1.65	
Utilities	-6.06	-9.14	
Wholesale/Retail Trade	0.60	0.96	

Decomposition into within and between components

For value added weights:

$$\omega_{i,t} = \frac{\mathsf{GVA}_{i,t}}{\mathsf{GVA}_t},$$

we have:

$$\Delta\left(\frac{\mathsf{GS}_{t}}{\mathsf{GVA}_{t}}\right) = \underbrace{\frac{1}{2}\sum_{i}\left(\omega_{i,t}+\omega_{i,t-1}\right)\Delta\left(\frac{\mathsf{GS}_{i,t}}{\mathsf{GVA}_{i,t}}\right)}_{i} + \underbrace{\frac{1}{2}\sum_{i}\left(\frac{\mathsf{GS}_{i,t}}{\mathsf{GVA}_{i,t}}+\frac{\mathsf{GS}_{i,t-1}}{\mathsf{GVA}_{i,t-1}}\right)\Delta\omega_{i,t}}_{\mathsf{Between-Industry Component} = 1.1 \text{ p.p.}}$$
(5)

Components of gross operating surplus at the firm level

Saving rates and firm characteristics

Decomposition of changes in saving rate across firm types

(p.p.)	Beginni	ng to End	Annual Changes		
	Within	Between	Within	Between	
Groups	(1)	(2)	(3)	(4)	
Size	12.11	0.29	12.10	0.29	
Age	10.17	2.23	7.61	4.79	
Size and Age	10.39	2.01	7.38	5.01	

Trends in saving rates and firm characteristics

Multinational production

• Mismatch between production and profit realization:

- U.S. GVA reduced when company produces through foreign affiliate.
- U.S. GS not affected because it is associated with headquarters.
- ullet Opposite movements in foreign countries \Longrightarrow no mismatch globally.
- Rise of global corporate saving does not reflect cross-country reshuffling of profits and production.

Are firms with significant foreign income different?

	Foreign income above 1%					
(p.p.)	Lev	/els	Tre	Trends		
Saving / GVA	3.84	6.23	0.34	0.30		
Dividend / GVA	-0.61	-0.66	0.05	-0.01		
Taxes / GVA	0.68	0.42	0.03	0.00		
Interest / GVA	-0.83	-1.33	-0.04	-0.04		
GOS / GVA	3.07	4.77	0.39	0.26		
GVA Weighted	Yes	No	Yes	No		

How was corporate saving used?

$$\underbrace{\mathsf{Saving-Investment}}_{\mathsf{Net\ Lending}} = \mathsf{Net\ Buybacks} + \Delta\ \mathsf{Net\ Financial\ Assets}.$$

	Net Buybacks		Debt Re	Debt Repayment		Cash Holdings	
	0.267	0.277	0.397	0.343	0.322	0.057	
	(0.064)	(0.071)	(0.051)	(0.048)	(0.142)	(0.054)	
GVA Weighted	Yes	No	Yes	No	Yes	No	

Uses of corporate saving by subperiod

	Net Ru	ıybacks	Debt Re	Debt Repayment		Cash Holdings	
	Net Be	тураска	Debt Ne	Беві Кераушені		- Casii Holdings	
1989-2000	0.174	0.326	0.516	0.346	0.053	-0.075	
	(0.098)	(0.075)	(0.149)	(0.067)	(0.074)	(0.028)	
2001-2013	0.130	0.129	0.346	0.337	0.312	0.050	
	(0.029)	(0.026)	(0.067)	(0.051)	(0.127)	(0.049)	
1989-2006	0.275	0.292	0.481	0.393	0.172	-0.042	
	(0.090)	(0.076)	(0.050)	(0.050)	(0.063)	(0.058)	
2007-2013	0.098	0.074	0.446	0.435	0.218	0.050	
	(0.028)	(0.018)	(0.082)	(0.051)	(0.053)	(0.031)	
GVA Weighted	Yes	No	Yes	No	Yes	No	

Summary of micro facts

- 1 Rise of corporate saving pervasive across industries.
- 2 Rise of corporate saving within industries and types of firms.
- Proximate cause is increase in corporate profits (even for multinationals).
- Allocated to buybacks, cash, and repayment of debt (time-varying).

What we do with the model

- Workhorse GE model with capital market imperfections.
- Focus on "global shocks" rather than idiosyncratic factors.
- Quantify how parameter changes affected cost of capital, profits, financial policies, investment, and saving.
- Significant role of real interest rate, price of investment goods, corporate income taxes, and markups.

Households

- Population grows at rate g.
- Households maximize:

$$\sum_{t=0}^{\infty} \beta^t \log \left(C_t \right), \tag{6}$$

$$C_{t} + \sum_{i} v_{it} s_{it+1} = w_{t} L + T_{t}^{h}$$

$$+ (1 + r_{t}) B_{t} - (1 + g) B_{t+1}$$

$$+ \sum_{i} \left((1 - \tau_{t}^{d}) d_{it} - e_{it} + v_{it} \right) s_{it}.$$
 (7)

Final goods

• Final good CES aggregate of varieties:

$$Y_{t} = \left(\sum_{i} y_{it}^{\frac{\varepsilon}{\varepsilon - 1}}\right)^{\frac{\varepsilon}{\varepsilon - 1}}.$$
 (8)

• Final good uses:

$$Y_t = C_t + \xi_t X_t + \mathsf{RC}_t. \tag{9}$$

Final goods

• Final good CES aggregate of varieties:

$$Y_{t} = \left(\sum_{i} y_{it}^{\frac{\varepsilon}{\varepsilon - 1}}\right)^{\frac{\varepsilon}{\varepsilon - 1}}.$$
 (8)

• Final good uses:

$$Y_t = C_t + \xi_t X_t + \mathsf{RC}_t. \tag{9}$$

• Markup and economic profit share:

$$\mu = \frac{\epsilon}{\epsilon - 1}$$
 and $s_{\pi} = \frac{\mu - 1}{\mu}$. (10)

Corporate sector

- Firms choose:
 - prices and output (monopolistic competition)
 - 2 labor and capital (investment)
 - 3 dividends, net equity issuance, and debt

Corporate sector

- Firms choose:
 - 1 prices and output (monopolistic competition)
 - 2 labor and capital (investment)
 - dividends, net equity issuance, and debt
- Objective function:

$$\max_{\{d_{it}, e_{it}, b_{it+1}, x_{it}, \ell_{it}, p_{it}\}_{t=0}^{\infty}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left\{ (1 - \tau_t^d) d_{it} - e_{it} \right\}.$$
 (11)

Dividend policy

- Whenever $\tau_t^d > 0$, repurchases preferred to dividends.
- Postulate dividend policy function:

$$d_{it} = \kappa \left(p_{it} y_{it} \right)^{\kappa_r} \left(\xi_t k_{it} \right)^{\kappa_k}, \tag{12}$$

where:

 κ_r : revenue elasticity of dividends,

 κ_k : (fixed) assets elasticity of dividends.

Financing frictions

• Equity flotation costs:

$$\mathsf{EC}_{it} = \lambda e_{it} \mathbb{I} \left(e_{it} \ge 0 \right). \tag{13}$$

Collateral constraint:

$$b_{it+1} \le \theta \xi_{t+1} k_{it+1}. \tag{14}$$

Production and capital accumulation

• Production function:

$$y_{it} = \exp\left(A_{it}\right) \left(\alpha k_{it}^{\frac{\sigma-1}{\sigma}} + (1-\alpha)\ell_{it}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}, \tag{15}$$

$$A_{it} = -\frac{\sigma_A^2}{2(1+\rho_A)} + \rho_A A_{it-1} + \sigma_A u_{it} \text{ with } u_{it} \sim \mathbb{N}(0,1).$$
 (16)

Production and capital accumulation

• Production function:

$$y_{it} = \exp\left(A_{it}\right) \left(\alpha k_{it}^{\frac{\sigma-1}{\sigma}} + (1-\alpha) \ell_{it}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}, \tag{15}$$

$$A_{it} = -\frac{\sigma_A^2}{2(1 + \rho_A)} + \rho_A A_{it-1} + \sigma_A u_{it} \text{ with } u_{it} \sim \mathbb{N}(0, 1).$$
 (16)

Capital accumulation:

$$(1+g)k_{it+1} = (1-\delta)k_{it} + x_{it}. (17)$$

• Convex adjustment costs: $CC_{it} = \frac{\psi(k_{it+1} - k_{it})^2}{2k_{it}}$.

Corporate flow of funds

• Profits (operating):

$$\pi_{it}(k_{it}, A_{it}; Y_t, w_t) = p_{it}y_{it} - w_t\ell_{it}.$$
 (18)

Corporate flow of funds

• Profits (operating):

$$\pi_{it}(k_{it}, A_{it}; Y_t, w_t) = p_{it}y_{it} - w_t\ell_{it}.$$
 (18)

Budget constraint:

$$d_{it} + (1 + \tau_t^{x}) \xi_t x_{it} = (1 - \tau_t^{c}) \pi_{it} + \tau_t^{f} - RC_{it}$$

$$+ \tau_t^{c} (\delta \xi_t k_{it} + r_t b_{it})$$

$$+ (1 + g) b_{it+1} - (1 + r_t) b_{it} + e_{it}. (19)$$

General equilibrium and flow of funds

• Equilibrium:

- household and firms maximize values
- labor, capital, and goods markets clear
- government budgets balance

General equilibrium and flow of funds

- Equilibrium:
 - household and firms maximize values
 - labor, capital, and goods markets clear
 - government budgets balance
- Saving flows:

$$S_t = Y_t - C_t - \mathsf{RC}_t = \xi_t X_t. \tag{20}$$

$$S_t^f = B_t - B_{t+1} - E_t + \xi_t X_t. \tag{21}$$

Plan

- Parameterize BGP of model to early global sample (1980-1984)
 - external parameters from various sources
 - internal parameters to match macro and micro moments

Plan

- Parameterize BGP of model to early global sample (1980-1984)

 - internal parameters to match macro and micro moments
- ② Introduce parameters changes from end of sample (2009-2013).

Plan

- Parameterize BGP of model to early global sample (1980-1984)
 - external parameters from various sources
 - internal parameters to match macro and micro moments
- 2 Introduce parameters changes from end of sample (2009-2013).
- 3 Compare key aggregates between new and old BGP.

Changes in parameters across BGPs

Parameter	From	То	Rationale
ξ	1.000	0.800	Karabarbounis and Neiman (2014).
$ au^c$	0.480	0.250	OECD Corporate Income Tax.
$ au^{ imes}$	0.117	0.147	McDaniel (updated).
r	0.043	0.009	King and Low (2014).
g	0.023	0.000	Slowdown of growth.
δ	0.074	0.093	U.S. National Accounts.
s_{π}	0.050	0.062	Generate observed decline in labor share.
T^f/Y	0.037	0.059	Stabilize tax payments to value added.

Quantifying the rise of corporate saving

Start of Sample	$\frac{S^f}{Y}$	wL Y	$\frac{D}{Y}$	<u> </u>	R
1. Data	0.162	0.612	0.101	0.215	
2. Model	0.162	0.612	0.101	0.215	0.153
End of Sample (Δ)	$\frac{S^f}{Y}$	$\frac{wL}{Y}$	$\frac{D}{Y}$	<u> </u>	R
3. Data	0.085	-0.054	0.005	-0.006	
4. Model	0.081	-0.054	-0.001	0.019	-0.031

• Cost of capital $R := \frac{(1-s_L-s_\pi)Y}{K}$.

Mechanisms

Corporate saving rate:

$$\frac{S^f}{Y} = 1 - \underbrace{\frac{wL}{Y}}_{\text{labor share}} - \underbrace{\frac{D}{Y}}_{\text{dividends}} - \text{Taxes \& Payments to Capital. (22)}$$

Labor share:

$$\frac{wL}{Y} = \left(\frac{1}{\mu}\right) \left(1 - \alpha^{\sigma} \left(\frac{\exp(A)}{\mu R}\right)^{\sigma - 1}\right). \tag{23}$$

Dividend share:

$$\frac{D}{Y} = \kappa \left(\frac{\xi K}{Y}\right)^{\kappa_k} \left(\frac{1}{Y}\right)^{1 - \kappa_r - \kappa_k}.$$
 (24)

Counterfactuals

Changes across BGPs	$\frac{S^f}{Y}$	$\frac{wL}{Y}$	$\frac{D}{Y}$	$\frac{I}{Y}$	R
1. Model	0.081	-0.054	-0.001	0.019	-0.031
2. No ξ	0.057	-0.029	-0.003	-0.005	0.005
3. No $ au^c$	0.048	-0.045	0.001	0.006	-0.028
4. No <i>r</i>	-0.015	-0.026	-0.005	-0.051	0.007
5. No s_{π}	0.055	-0.026	-0.002	0.001	-0.027

CES vs. CD production function

End of Sample (Δ)	$\frac{S^f}{Y}$	$\frac{wL}{Y}$	$\frac{D}{Y}$	$\frac{I}{Y}$	R
1. Data	0.085	-0.054	0.005	-0.006	
2. Model CES ($\sigma=1.25$)	0.081	-0.054	-0.001	0.019	-0.031
3. Model C-D ($\sigma=1.00$)	0.054	-0.008	-0.007	-0.011	-0.030

Conclusion

Takeaways

- Global rise of corporate saving and net lending.
- 2 Reflects decline in labor share and sticky dividends.
- 1 Increase observed within many countries, industries, and firms.
- Quantitatively important role of decline in cost of capital.

EXTRA SLIDES

Corporate saving rates by country

Corporate saving rates by country

Corporate saving rates by country

Variable definitions at the firm level

$$\mathsf{GVA}_{f,c,i,t} = \mathsf{Sales}_{f,c,i,t} - \pi_{c,i,t} \times \mathsf{Available}_{f,c,i,t}. \tag{25}$$

$$GOS_{f,c,i,t} = \underbrace{Sales_{f,c,i,t} - Oper. \ Exp_{f,c,i,t} + Depr_{f,c,i,t}}_{Operating \ Income \ Before \ Depreciation \ and \ Amortization} + R\&D_{f,c,i,t}.$$
(26)

$$\mathsf{GS}_{f,c,i,t} = \mathsf{GOS}_{f,c,i,t} - \mathsf{Interest}_{f,c,i,t} - \mathsf{Corp.} \ \mathsf{Taxes}_{f,c,i,t} - \mathsf{Dividends}_{f,c,i,t}.$$
(27)

Multinational production example

U.S. HQ comp	any earns 1\$ produced in:	United States	d States Fore	
Repatriation of	_	No	Yes	
United States	GVA and GOS	1	0	0
	Saving	1	1	1
	Reinvested Earnings	0	-1	0
	Net Dividends	0	0	-1
Foreign	GVA and GOS	0	1	1
	Saving	0	0	0
	Reinvested Earnings	0	1	0
	Net Dividends	0	0	1

Parameter	Value	Source
g	0.023	World Bank.
r	0.043	King and Low (2014).
σ	1.25	Karabarbounis and Neiman (2014).
δ	0.074	U.S. National Accounts.
ξ	1.00	Normalization.
s_{π}	0.05	Basu and Fernald (1997).
θ	1.70	Ratio of debt to fixed assets (Compustat).
λ	0.028	Gomes (2001).
$ au^d$	0.17	OECD Dividend Tax.
$ au^c$	0.48	OECD Corporate Income Tax.
κ_r	0.63	Estimation of dividend policy function.
$\kappa_{\pmb{k}}$	0.05	Estimation of dividend policy function.

Parameter	Value	Source
α	0.292	Labor share of 0.612.
κ	0.170	Dividend to output of 0.101.
T^f/Y	0.037	Corporate saving rate of 0.162.
$ au^{x}$	0.117	Investment rate of 0.215.
ψ	5.500	Firm-level revenue elasticity of investment of 0.36.
$ ho_{A}$	0.800	Autocorrelation log revenues of 0.79.
σ_A	0.480	Standard deviation log revenues of 1.79.