Accounting for Factorless Income

Loukas Karabarbounis University of Minnesota Brent Neiman University of Chicago

May 2018

- Value added produced in an economy equals sum of:
 - Compensation to labor
 - Capital rental payments
 - Economic profits

- Value added produced in an economy equals sum of:
 - Compensation to labor
 - Capital rental payments
 - Economic profits
- Or, $s_L + s_K + s_\Pi = 1$

- Value added produced in an economy equals sum of:
 - Compensation to labor
 - Capital rental payments
 - Economic profits
- Or, $s_L + s_K + s_\Pi = 1$
- Separating these matters for understanding:
 - Production technology
 - Competition in product markets
 - Factor shares and inequality
 - Responsiveness to policies (monetary, tax, regulatory)

• But, it's hard to measure these components!

- But, it's hard to measure these components!
- Economic profits?

- But, it's hard to measure these components!
- Economic profits? Bad data on costs

- But, it's hard to measure these components!
- Economic profits? Bad data on costs
- Capital rental payments?

- But, it's hard to measure these components!
- Economic profits? Bad data on costs
- Capital rental payments? Firms own their capital

- But, it's hard to measure these components!
- Economic profits? Bad data on costs
- Capital rental payments? Firms own their capital
- Wages and benefits?

- But, it's hard to measure these components!
- Economic profits? Bad data on costs
- Capital rental payments? Firms own their capital
- Wages and benefits? Proprietors, mixed income, etc.

- But, it's hard to measure these components!
- Economic profits? Bad data on costs
- Capital rental payments? Firms own their capital
- Wages and benefits? Proprietors, mixed income, etc.
- Relative ease in measuring labor compensation drove focus on labor share s_L , which was historically constant

- s_L has declined globally in recent decades, and most imputations of s_K don't offset it during this period
- Hence, significant residual has risen since 1980
- We call this residual "factorless income", defined as:

Factorless Income =
$$Y - WL - RK$$
,

where:

- Y is value added from national accounts
- WL is compensation from national accounts
- K is capital from the national accounts
- R is calculated rental rate, following Hall-Jorgenson (1967)

How to Allocate/Interpet Factorless Income?

- Three (among other) Possibilities:
 - 1 Maybe it's all profits (Case □)
 - 2 Maybe we are "missing" investment (Case K)
 - **3** Maybe our imputation of rental rate isn't good (*Case R*)

How to Allocate/Interpet Factorless Income?

- Three (among other) Possibilities:
 - 1 Maybe it's all profits (Case □)
 - 2 Maybe we are "missing" investment (Case K)
 - **3** Maybe our imputation of rental rate isn't good (*Case R*)
- Variants of threse three strategies are common in literature:
 - **1** Case Π : Hall (1990), Rotemberg and Woodford (1995), Basu and Fernald (1997), Rognlie (2016), Barkai (2017), + others
 - Case K: Hall (2001), McGrattan and Prescott (2005), Corrado, Hulten, and Sichel (2009), + others
 - 3 Case R: KLEMS, Gomme, Ravikumar, and Rupert (2011), Koh, Santaelalia-Llopis, and Zheng (2016), + others

What We Do

- Explore these three interpretations of US factorless income and elaborate on their implications for tech, inequality, etc.
- We are skeptical of Case □
 - s_{Π} rises since '80, but still below historical levels
 - Requires extremely volatile path of technology
- We are more open, but still skeptical of Case K
 - Recent scale of unmeasured capital plausible, less so in the 60s
 - Requires potentially different take on GDP (and labor share)
- We find Case R most promising, but requires better explanation for why r deviates from Treasuries

Agenda

- Notation and Data
- (Almost) Model-free Analysis
 - Case

 ☐ , with discussion of De Loecker and Eeckhout (2017)
 - Case K, and
 - Case R
 - TFP Comparison
- Model, Calibration, and Counterfactuals

Notation

- Business sector (i.e. corporate and non-corporate)
 - Value added: P^QQ
 - Labor Compensation: WL
- Housing (i.e. residential sector)
 - Value added: $P^H H$
 - Labor Compensation: 0
- Private Economy
 - GDP (ex gov't): $Y = P^Q Q + P^H H$
 - Profits: $\Pi = \Pi^Q + \Pi^H$

Data

- Data from US NIPA and FAT, exclude government, 1960-2016
- $RK = \sum_{j} R^{j} K^{j}$, where we have three capital types:
 - j = I: IT capital (used by business sector). Includes information processing equipment and software.
 - j = N: Non-IT capital (used by business sector). Includes non-residential structures, industrial, transportation, and other equipment, R&D, and entertainment and artistic originals.
 - j = H: Housing (consumed by households)
- Rental rate (derived from model below, taxes removed here):

$$R_t^j = \xi_t^j \left[\left(rac{\xi_{t-1}^j}{\xi_t^j}
ight) (1 + r_t) - \left(1 - \delta_t^j
ight)
ight]$$

Data

• How do factor shares look before allocating factorless income?

(Note: All plots throughout are 5-year moving averages.)

Data

• How do factor shares look before allocating factorless income?

Agenda

- Notation and Data
- (Almost) Model-free Analysis
 - Case □, and discussion of De Loecker & Eeckhout (2017)
 - Case K, and
 - Case R
 - TFP Comparison
- Model, Calibration, and Counterfactuals

- $s_{\Pi} \uparrow \text{ since } 1980 \text{ led to } s_L \downarrow \text{ (Barkai '17; Eggertsson et al. '18)}$
- Referenced by view that monopoly power

 or call for antitrust
- Seemingly consistent with DeLoeker-Eeckhout (DLE, 2017)

• But s_{Π} remains below average levels from 1960s/1970s

• Correl $(r, s_{\Pi}) = -0.91$: Little information beyond behavior of r

- Additional Implication: Not a markup shock on its own!
 - Stories must tightly link declining r and rising s_{Π}
 - Labor's share of business costs was 0.85 in 60s/70s, dropped to 0.70 in 1980 then rose back to 0.80 after 2000
 - Will formalize later, but major implications for technology

Case Π

- Housing is a useful illustration, motivated by Vollrath (2017)
- Results look qualitatively the same as business sector!

Case Π – Robustness

What about with (hypothetical) flat real interest rate?

- Case
 Π not only evidence of rising profit share and markups
- DLE (2017) shows surge since 1980 using Compustat Data

- DLE (2017) shows surge since 1980 using Compustat Data
- "Driver" of this is surge is Sales/COGS

- But rise in Sales/COGS due to fall in COGS/(COGS+SG&A)!
 - First showed by Traina (2018)
 - Consistent with Gutierrez and Philippon (2017)

- COGS: "...all expenses directly allocated by the company to production, such as material labor, and overhead..."
- SG&A: "...all commercial expenses of operation (such as, expenses not directly related to product production) incurred in the regular course of business pertaining to the securing of operating income..."
- Compustat only includes items in COGS if company does not itself allocate to SG&A.
- Compustat only includes items in SG&A if company does not itself allocate to COGS.
- Even if SG&A has more fixed costs than COGS, this means that markups are less related to profits, labor share, etc.

Actual Markup Estimates? Our best efforts...

	Trend (per 10 years)		Years Covered		Firms Included	
Country	Sales COGS	Sales COGS+SG&A	Start	End	Min	Max
Brazil	-0.04	-0.00	1996	2016	128	284
China	-0.01	-0.02***	1993	2016	314	3683
France	-0.07*	-0.01	1999	2016	111	631
Germany	0.00	0.03***	1998	2016	119	668
India	0.12***	0.06**	1995	2016	630	2890
Italy	0.00	-0.06***	2005	2016	202	264
Japan	0.06***	0.03***	1987	2016	2128	3894
Korea	0.00	-0.03***	1987	2016	419	1682
Russia	-0.13	-0.01	2004	2016	127	245
Spain	0.27**	-0.03	2005	2016	102	128
Taiwan	-0.05**	-0.02	1997	2016	160	1789
United Kingdom	0.28***	0.07***	1988	2016	183	1489
United States	0.09***	0.02***	1981	2016	3136	8403

Simple Average

0.04

0.00

Case ∏ Summary

- We do not think all factorless income is economic profits
- Highlights mechanical role of r and, therefore, huge decline in profits from the 60s/70s to 80s and reversion from 80s to now
- Major fluctuations in labor's share of costs will require huge fluctuations (in both directions!) of factor-biased technology
- Other evidence extremely sensitive and, if picking up rising fixed costs, potentially informative about μ but not about Π

Agenda

- Notation and Data
- (Almost) Model-free Analysis
 - Case ∏, with discussion of De Loecker and Eeckhout (2017)
 - **Case** *K*, and
 - Case R
 - TFP Comparison
- Model, Calibration, and Counterfactuals

- Idea is we "miss" certain investment expenditures
- Let ξ^U denote the price of unmeasured investment
- ullet Let X^U denote the quantity of unmeasured investment
- ullet Let R^U denote the rental rate of unmeasured capital
- Let K^U denote the stock of unmeasured capital

• "Revised" GDP \tilde{Y} related to measured income Y as:

$$\tilde{Y} = Y + \xi^{U}X^{U} = WL + R^{I}K^{I} + R^{N}K^{N} + R^{H}K^{H} + \Pi + R^{U}K^{U}$$

We rearrange so RHS is all known or assumed:

$$R^{U}K^{U} - \xi^{U}X^{U} = Y - WL - R^{I}K^{I} - R^{N}K^{N} - R^{H}K^{H} - \Pi^{Q} - \Pi^{H}$$

- We can solve for $\{\xi_t^U, X_t^U, R_t^U, K_t^U\}$ which satisfies:
 - Above equation
 - $R_{t+1}^{U} = R(\xi_t^{U}, \xi_{t+1}^{U}, \delta^{U}, r_t)$
 - $K_{t+1}^U = (1 \delta_t^U) K_t^U + X_t^U$

- Leave Π_t^H as in Case Π , choose $\Pi^Q=0.06$, and $\delta^U=0.05$
- Many different paths of $\{\xi_t^U, X_t^U, R_t^U, K_t^U\}_{(t \in 1960, 2016)}$
- We choose one such path, with small $\xi_t^U X_t^U$ and $\operatorname{Vol}(\frac{\xi_{t+1}^U}{\xi_t^U})$
- (We could do strictly better with variation in s_Π^Q or δ^U)

Case K Summary

- One case of factorless income arising from unmeasured capital
- Recent scale similar to Hall (2001) or Eisfeldt & Papanikolaou (2013), though scale before 1970 implausibly large.
- Scale nowhere near Corrado, Hulten, and Sichel (2009) must envision unmeasured capital more broadly than "IT"
- Note that tradeoff between scale early vs. late reflects decision to minimize $\xi^U X^U$
- Requires re-evaluation of factor share dynamics since "revised" GDP differs in some years

Agenda

- Notation and Data
- (Almost) Model-free Analysis
 - Case ∏, with discussion of De Loecker and Eeckhout (2017)
 - Case K, and
 - Case R
 - TFP Comparison
- Model, Calibration, and Counterfactuals

- Idea is lots of factors omitted from our rental-rate calculation (risk premium, adjustment costs, etc.)
- Solve for revised opportunity cost of capital \tilde{r} such that:

$$P^{Q}Q - WN - \tilde{R}^{I}K^{I} - \tilde{R}^{N}K^{N} - \Pi^{Q} = 0,$$

where $\tilde{R}^j = R(\tilde{r}, \cdot)$ and where $\Pi^Q = 0.06$ as in Case K.

 Assumption made in KLEMS, Gomme, Ravikumar, and Rupert (2011), and Koh, Santaelalia-Llopis, and Zheng (2016)

Case R Summary

- Shifting r to account for factorless income results in more stable paths for interest and rental rates
- Similar logic drives conclusion in Caballero, Farhi, and Gourinchas (2017) that risk premium has risen since 1980
- We find this most promising of our cases, though it clearly requires elaboration on where gap between \tilde{r} and r comes from

Agenda

- Notation and Data
- (Almost) Model-free Analysis
 - Case

 ☐ , with discussion of De Loecker and Eeckhout (2017)
 - Case K, and
 - Case R
 - TFP Comparison
- Model, Calibration, and Counterfactuals

Naive vs. Modified TFP

 Standard "Naive" Solow Residual uses factor shares of revenues:

$$d \ln \mathsf{TFP}_{\mathsf{Naive}} = d \ln Q - s_{L}^{Q} \times d \ln L - \left(1 - s_{L}^{Q}\right) \sum_{j \in \{I, N\}} \frac{s_{K^{j}}^{Q}}{s_{K}^{Q}} \times d \ln K^{j}$$

 "Modified" Solow Residual uses factor shares of costs and better approximates technology:

$$d \ln \mathsf{TFP}_{\mathsf{Modified}} = d \ln Q - \frac{s_L^Q}{1 - s_\Pi^Q} \times d \ln L - \sum_{j \in \{I,N,U\}} \frac{s_{K^j}^Q}{1 - s_\Pi^Q} \times d \ln K^j$$

"Modified" calculation differs across our three cases

Naive vs. Modified TFP

Two series most closely correspond for case R

Agenda

- Notation and Data
- (Almost) Model-free Analysis
 - Case

 ☐ , with discussion of De Loecker and Eeckhout (2017)
 - Case K, and
 - Case R
 - TFP Comparison
- Model, Calibration, and Counterfactuals

Model

- Business sector: $L, K^I, K^N, K^U \rightarrow C, X^I, X^N, X^U, X^H$
- Housing sector: $K^H \to H$
- Representative workers work and consume (C, H) using wages
- Representative capitalists lease capital, invest, consume (C, H) using rental income
- Perfect foresight and exogenous real interest rate path
- Purpose of model is to understand how shocks and their impact differ across our three cases

Model

- C_t, X_t^j, H_t are CES aggregates of intermediate varieties
- Intermediates produced with CES technology:

$$Q_{t} = \left(\alpha \left(A_{t}^{K} K_{t}^{Q}\right)^{\frac{\sigma-1}{\sigma}} + (1 - \alpha) \left(A_{t}^{L} L_{t}\right)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

- Labor rented at wage W_t
- Capital bundle:

$$\mathcal{K}_{t}^{Q} = \left(\sum_{j
eq H} \left(
u_{t}^{j}
ight)^{rac{1}{ heta}} \left(\mathcal{K}_{t}^{j}
ight)^{rac{ heta-1}{ heta}}
ight)^{rac{ heta}{ heta-1}}$$

rented at rate:

$$R_t^Q = \left(\sum_{j
eq H}
u_t^j \left(R_t^j
ight)^{1- heta}
ight)^{rac{1}{1- heta}}$$

Model

- Relative prices from productivity in final good production
- Markups from elasticity of substitution in those processes
- ullet Workers and capitalists are Cobb-Douglas in C_t and H_t
- ullet Capitalists' FOC yields formula for R_t^j used above

Quantification

Exogenous processes taken straight from data:

$$\{\tau s, L_t, \delta_t^j, \xi_t^j, \mu_t^Q, \mu_t^H\}$$

Extracted processes to match rest of data:

$$\{\beta_t, A_t^L, A_t^K, \nu_t^j, A_t^H\}$$

Equilibrium requires sequence of prices and quantities:

$$\begin{aligned} & \text{Prices:} & \; \{W_t, R_t^j, P_t^H\} \\ & \text{Quantities:} & \; \{H_t^L, H_t^K, H_t, C_t^L, C_t^K, Q_t, K_t^j, X_t^j, D_t\} \end{aligned}$$

- · Reaches BGP with values equal to factual at end of data
- Match data during 1960-2016 under each of the three cases

Extracted Labor-Augmenting Technology

$$\sigma = 1.25 \quad A_t^L = (1 - \alpha)^{\frac{\sigma}{1 - \sigma}} \left(s_{L,t}^Q \right)^{\frac{1}{\sigma - 1}} \left(\mu_t^Q \right)^{\frac{\sigma}{\sigma - 1}} W_t$$

Extracted Labor-Augmenting Technology

$$\sigma = 0.75 \quad A_t^L = (1 - \alpha)^{\frac{\sigma}{1 - \sigma}} \left(s_{L,t}^Q \right)^{\frac{1}{\sigma - 1}} \left(\mu_t^Q \right)^{\frac{\sigma}{\sigma - 1}} W_t$$

Extracted Capital-Augmenting Technology

$$\sigma = 1.25 \quad A_t^K / R_t^Q = \alpha^{\frac{\sigma}{1-\sigma}} \left(s_{K,t}^Q \mu_t^Q \right)^{\frac{1}{\sigma-1}} \mu_t^Q$$

Extracted Capital-Augmenting Technology

$$\sigma = 0.75 \quad A_t^K / R_t^Q = \alpha^{\frac{\sigma}{1-\sigma}} \left(s_{K,t}^Q \mu_t^Q \right)^{\frac{1}{\sigma-1}} \mu_t^Q$$

Counterfactuals: Examples of How the Cases Matter
Changes (1986-1990 vs. 2011-2015) in s_l^Q

	Elasticity $\sigma=1.25$			Elasticity $\sigma = 0.75$		
	Case П	Case K	Case R	Case П	Case K	Case R
Baseline	-0.030	-0.029	-0.030	-0.030	-0.029	-0.030
μ^{Q}	-0.071	0.000	0.000	-0.083	0.000	0.000
ξ^I	-0.016	-0.016	-0.021	0.019	0.018	0.024
(A^K,ν^I)	0.041	-0.056	-0.048	0.063	0.025	-0.003
ξ^N	-0.002	-0.002	0.009	0.002	0.002	-0.008
(A^K,ν^N)	0.075	0.009	-0.035	0.023	-0.094	-0.024
$ au^k$	0.000	-0.012	0.002	0.000	0.011	-0.001

Counterfactuals: Examples of When Cases Don't

Changes (1986-1990 vs. 2011-2015) in $\ln (C_K/C_L)$

• Same for implications on GDP growth (see paper)

Conclusions

- Skeptical of Case □ :
 - Two (negatively correlated) shocks, not one
 - Requires longer view than just early-1980s onward
- A bit less skeptical of Case K: Our version requires too much K^U early-on, but other versions might do better
- Most optimistic about Case R: But what is source of wedge?
- For many questions including cause of s_L decline, but also much more! – interpretation of factorless income matters
- Hope to see explorations of factorless income around the world