Trade Adjustment and Productivity in Large Crises

Gita Gopinath and NBER

Brent Neiman Harvard University University of Chicago and NBER

November, 2012

Motivation

- Large crises associated with collapse in dollar value of imports
 - Argentina (2000-2002): 69%
 - South Korea (1997-1998): 35%
 - Thailand (1997-1998): 32%
- Large measured TFP declines
 - Argentina: 12% (in manufacturing, Sandleris & Wright 2011)
 - South Korea: 7.1% (Meza & Quintin 2006)
 - Thailand: 15.1% (Meza & Quintin 2006)
- Little known about mechanics and costs of trade collapse

We do Three Things:

- 1 Use firm-level data to empirically characterize the mechanics of trade adjustment during the Argentine crisis of 2001/2002
- 2 Use model to evaluate channels though which collapse in imports impacts manufacturing productivity and welfare
- 3 We show in a numerical simulation:
 - These channels can be important quantitatively, and
 - Firm-level data moment are important in evaluating impact

Related Literatures

- Terms of Trade and Productivity: Mendoza and Yue (2009), Kehoe and Ruhl (2008), Arkolakis, Costinot, and Rodriquez-Clare (2011), Feenstra, Mandel, Reinsdorf, and Slaughter (2009), Burstein and Cravino (2010)
- 2 Imported Intermediate Inputs & Productivity: Halpern, Koren and Szeidl (2009), Broda, Greenfield, and Weinstein (2006), Amiti and Konings (2007), Goldberg, Khandelwal, Pauvcnik, and Topalova (2009)
- 3 Trade and Gains from Varieties: Feenstra (1994), Broda and Weinstein (2006), Arkolakis et al. (2008)
- 4 Misallocation, Intermediate Multiplier: Hsieh and Klenow (2009), Jones (2010), Sandleris and Wright (2010)

Road Map

- Data Description
- Empirics: Firms Adjusted Imports Differently to Shock
- Simple Theory Replicates Empirical Features and Generates Decline in Productivity
- Simulation: These Channels Can Be Important Quantitatively

Data Description

- Trade data collected by Argentine customs for 1996-2008
 - Includes: firm name, tax ID, date, quantity, weight, unit price, value, HTS, country, port, taxes, model # (sometimes), etc.
 - Imports purchased from The Datamyne (our focus)
 - Exports purchased from Nosis (lower quality, used less)

- Capital IQ Data base (Standard and Poors)
 - Match \approx 2000 firms that make up 65% of imports.
 - Info on primary sector (10 categories) and industry (131)
 - Used to identify distributors or trading companies
 - Used (with RAs) to determine if MNC or not

Argentina Constructed Multilateral Import Series

First Empirical Result

- **1** Extensive margin at **country level is not** important (\approx 10%)
- **2 Within-firm** (sub-) extensive margin is important (\approx 40%)
- 3 Pattern of trade adjustment varies with size
- Assuming CES, dropped varieties imply 13% import price increase when using micro data, 0% using aggregate data

Extensive Margin (Unweighted)

Extensive Margin (Weighted)

$$\frac{\Delta v_t}{v_{t-1}} = \underbrace{\left(\sum_{i \in \Psi_{t-1} \cap \Psi_t} \frac{v_{i,t} - v_{i,t-1}}{v_{t-1}}\right)}_{\text{Intensive Margin}} + \underbrace{\left(\sum_{i \in \Psi_t, i \notin \Psi_{t-1}} \frac{v_{i,t}}{v_{t-1}} - \sum_{i \in \Psi_{t-1}, i \notin \Psi_t} \frac{v_{i,t-1}}{v_{t-1}}\right)}_{\text{Extensive Margin}},$$

where

 $v_t = \text{Total FOB at period } t$ $v_{i,t} = \text{Total FOB for CUIT/HTS } i \text{ at month } t$ $\Psi_t = \text{Set of CUIT/HTS } i \text{ with } v_{i,t} > 0.$

Firm Intensive/Extensive Margin (Quarterly)

Firm Intensive/Extensive Margin (Annual)

Constant Panel of Importers (Benchmarked in 1999)

Product (HTS 10) Intensive/Extensive Margin (Quarterly)

HTS revisions in 1997, May 2002, May 2007

Pierce and Schott (2009) for U.S., 6 digit

Product (HTS 10) Intensive/Extensive Margin (Annual)

Conventional Extensive Margin Not Important

	Total	% Intensive	% Extensive
Firm	-69%	0.89	0.11
HTS 6	-69%	1.00	0.00
HTS 10	-69%	0.92	0.08
HTS 6 X Cty	-69%	0.91	0.09
HTS 10 X Cty	-69%	0.79	0.21

Table: Intensive and Extensive Margins, 2000-2002

- Top 5% of firms account for 85% of imports
- Top 5% of 6 digit account for 60% of imports

Second Empirical Result

- 1 Extensive margin at country level is not important ($\approx 10\%$)
- **2 Within-firm** (sub-) extensive margin is important (pprox40%)
- 3 Pattern of trade adjustment varies with size
- Assuming CES, dropped varieties imply 13% import price increase when using micro data, 0% using aggregate data

Within-Firm Extensive Margin (HTS10) is Large

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Sub-Extensive Margin (Plus Extensive) is Important

	Total	% Sub-Intensive	% Sub-Extensive	% Extensive
HTS 6	-69%	0.71	0.18	0.11
HTS 10	-69%	0.56	0.33	0.11
HTS 6 X Cty	-69%	0.54	0.35	0.11
HTS 10 X Cty	-69%	0.44	0.45	0.11

Table: Sub-Intensive, Sub-Extensive, and Extensive Margins, 2000-2002

How is Sub-Extensive Big if Extensive is Small?

1 Firms drop a product that other firms continue to import

2 Firms drop some imported products but not others

Products in the 25 th/50 th/75 th percentiles had initial import values of 30,000/165,000/800,000.

BGH, Argentine Manufacturer (#25 Importer)

Siderca, Argentine Building Products Firm (#22 Importer)

Third Empirical Result

- f 1 Extensive margin at **country level is not** important (pprox 10%)
- **2 Within-firm** (sub-) extensive margin is important (pprox40%)
- 3 Pattern of trade adjustment varies with size
- Assuming CES, dropped varieties imply 13% import price increase when using micro data, 0% using aggregate data

Importer Size and Trade Adjustment

• Holds in regression with 10 sector and MNC dummies

Importer Size and Trade Adjustment

 Smaller firms more likely to adjust with extensive margin, largest firms with sub-intensive margin

Fourth Empirical Result

- f 1 Extensive margin at **country level is not** important (pprox 10%)
- **2** Within-firm (sub-) extensive margin is important (\approx 40%)
- 3 Pattern of trade adjustment varies with size
- 4 Assuming CES, dropped varieties imply 13% import price increase when using micro data, 0% using aggregate data

Implication of Dropped Varieties for CES Unit Cost

 Assuming inputs are combined CES, the impact of changing varieties on unit cost of import bundle is (Feenstra 1994):

$$\mathbb{F} = \left(\frac{\sum_{\omega_t} v_{i,t} / \sum_{\omega_{t-1} \cap \omega_t} v_{i,t}}{\sum_{\omega_{t-1}} v_{i,t-1} / \sum_{\omega_{t-1} \cap \omega_t} v_{i,t-1}}\right)^{(\varepsilon-1)/\varepsilon}$$

- If economy drops import varieties, generates additional impact on cost of production above standard ToT measure
- If firms drop different import varieties, cost of production and market shares change differentially among continuing traders (even with common shock)

Varieties and Unit Cost: Aggregate vs. Firm-Level

- Measured comparing 2000-2002
- Elasticity equal to 4

$\varepsilon = 0.75$	\mathbb{F} Weighted Average of \mathbb{F}_i			
Percentiles Included:	all	all	(5,95)	(20,80)
HTS 6	1.000	1.087	1.046	1.034
HTS 10	0.992	1.110	1.068	1.060
HTS 6 X Country	1.012	1.163	1.099	1.063
HTS 10 X Country	1.004	1.176	1.096	1.097
Simple Average	1.002	1.134	1.077	1.064

Broda & Weinstein (2006), HTS 10-digit X country, mean/median elasticity of 2.9/8.2

Concern 1: Firms Can Still Use Inputs They Don't Import

- 1 Distributors: Share ranges from 3%-8%, declines during crisis
- 2 Inventories (Alessandria, Midrigan, and Kaboski 2010):
 - Classify HTS6 sectors by inventory/sales ratio (from corresponding U.S. sector in 2000).

• In simulation, we consider case where all imports dropped like the low inventory intensity goods (53% compared to 73%).

Concern 2: Less Varieties Are Produced?

-10 -12

Time Dummies (Number, SA) Regressions Run with Firm-Fixed Effects 6 **Export Varieties** 4 2 1996 1997 1998 1999 2000 2001,2002 2003 2004 2005 2006 2007 2008 Import Varieties -4 -6 Import Varieties Less Export Varieties -8

How Empirical Results Motivate the Model/Calculations

- Empirical Finding 1: We'll ignore firm entry/exit into trading behavior
- Empirical Finding 2: Changing market shares. heterogeneity, and sub-extensive margin all matter.
- Empirical Finding 3: A per-variety fixe cost generates non-homotheticity that correlates with size
- Empirical Finding 4: A (loose) calibration target

Basic Idea in the Model

- · Without frictions, firms desire same share of imported inputs
- ullet Fixed costs + het tech = varying deviations from this share
- Larger firms have lower unit costs of production.
- Shock amplified due to round-about production (Jones 2010)
- Joint dist of (exogenous) technologies and (endogenous) import shares matters for productivity

Production Function

Each domestic manufacturing firm i produces a unique variety:

$$Y_i = A_i (K_i^{\alpha} L_i^{1-\alpha})^{1-\mu} X_i^{\mu}$$

• X_i combines a continuum of domestic and foreign inputs:

$$X_{i} = \left[Z_{i}^{\rho} + M_{i}^{\rho}\right]^{\frac{1}{\rho}}$$

$$Z_{i} = \left[\int_{j} z_{ij}^{\theta} dj\right]^{\frac{1}{\theta}}$$

$$M_{i} = \left[\int_{k \in \Omega_{i}} (bm_{ik})^{\theta} dk\right]^{\frac{1}{\theta}}$$

- Ω_i is set of inputs imported by firm i
- $b \ge 1$ captures higher import quality
- $\frac{1}{1-\rho}$: elasticity between imported and domestic inputs.
- $\frac{1}{1-\theta}$: elasticity within imported and domestic inputs.

Demand

• Final good G is formed by aggregating all the g_i :

$$G = \left[\int_{i} g_{i}^{\theta} di \right]^{\frac{1}{\theta}},$$

where $1/(1-\theta)$ is elasticity of substitution.

• Firm's output includes final and intermediate demand:

$$Y_i = g_i + z_i$$

= $g_i + \int_i z_{ji} dj$.

Firm's Problem (1/3)

Firm's marginal cost depends on technology and input price:

$$C_i = rac{1}{\mu^{\mu}(1-\mu)^{1-\mu}} rac{P_V^{1-\mu}P_{X_i}^{\mu}}{A_i},$$

where $P_V = \alpha^{-\alpha} (1 - \alpha)^{-(1-\alpha)} r^{\alpha} w^{1-\alpha}$

$$P_{X_i} = \left[P_Z^{\frac{\rho}{\rho-1}} + P_{M_i}^{\frac{\rho}{\rho-1}}\right]^{\frac{\rho-1}{\rho}}$$
 if firm i imports $= P_Z$ if firm i does not import.

- All price indices dual to CES: P_G , P_{X_i} , P_Z , and P_{M_i}
- All imported varieties have same cost, p_m , so:

$$P_{M_i} = \frac{p_m}{h} |\Omega_i|^{\frac{\theta-1}{\theta}}$$

Firm's Problem (2/3)

• Total demand for good Y_i is then:

$$Y_i = \left(\frac{p_i}{P_G}\right)^{\frac{1}{\theta-1}} G + \int_j \left(\frac{p_i}{P_{X_j}}\right)^{\frac{1}{\theta-1}} X_j dj,$$

• Firm i's operating profits are then:

$$\pi_i = \frac{1-\theta}{\theta} C_i Y_i$$

Firm's Problem (3/3)

Importers pay entry and per-variety (convex) fixed cost:

$$F(\Omega_i) = f|\Omega_i|^{\lambda}$$

where $f, \lambda > 0$.

Hence, firm i chooses:

$$\Omega_i = \arg \max_{\Omega_i} \left\{ \Pi_i - wF(|\Omega_i|) \right\},$$

• Ω_i is increasing in A_i as long as λ is sufficiently high. SOC $\frac{\rho(1-\theta)}{\theta(1-\rho)} - \lambda + \left(\frac{\rho}{1-\rho} - \frac{\mu\theta}{1-\theta}\right) \frac{(\theta-1)}{\theta} \left(P_{M_i}/P_{X_i}\right)^{\frac{\rho}{\rho-1}} < 0$

Numerical Simulation

- Partial Equilibrium
- Consumers Demand: Buy manufacturing final good G and C_n :

$$C = \left[\omega G^{\eta} + (1 - \omega) C_{N}^{\eta}\right]^{1/\eta},$$

where C and P_N are fixed exogenously

- We consider increase in p_m
- Equilibrium is $\{p_i, \Omega_i\}$ given price indices, demand, etc.

Algorithm

- Firms take $P_Z^1 \ (= P_G^1)$ as given
- Iterate the system:

$$p_{i}^{1} = \frac{1}{A_{i}} \frac{1}{\theta} \frac{P_{V}^{1-\mu}}{\mu^{\mu} (1-\mu)^{1-\mu}} \left[\left(P_{Z}^{1}\right)^{\frac{\theta-1}{\theta}} + \left(\frac{p_{m}}{b} \left|\Omega_{i}^{1}\right|^{\frac{\theta-1}{\theta}}\right)^{\frac{\rho}{\rho-1}} \right]^{\frac{\mu-1}{\rho}}$$

$$P_{Z}^{1} = \left(\int_{i} \left(p_{i}^{1}\right)^{\frac{\theta}{\theta-1}} di \right)^{\frac{\theta-1}{\theta}},$$

for all i until $\{p_i^1\}$ consistent with P_Z^1 and $\{\Omega_i^1\}$.

- Generates $\left\{p_i^2, \Omega_i^2\right\}$ and $\left\{P_Z^2, P_G^2\right\}$
- Repeat until $\left\{ p_i^j, \Omega_i^j
 ight\} = \left\{ p_i^{j-1}, \Omega_i^{j-1}
 ight\}$

Calibration Parameters

θ 0.75	ρ 0.75			$\frac{\alpha}{1/3}$	λ 2	f 0.0075	η 0.8	
w 50	r 50	C 1x10 ⁸	P_N 1	ω 0.2	p _m ^{pre} 1.74	\widehat{p}_m 1.155	$\gamma^{\it pre}$ 0.83	γ^{post} 0.89

Share of Total Imports

Baseline Simulation Results

- Empirical Finding 1: Matched by assumption
- Empirical Finding 2:
 - Data: Sub-extensive and sub-intensive account for 45 for 44%
 - Model: Sub-extensive and sub-intensive account for 47 and 53%
- Empirical Finding 4:
 - Data: Trade-weighted impact of dropped varieties on marginal cost ranged from 6-13%
 - Model: Equals 8.8%

Baseline Simulation Results

- We generate earlier patters seen with size (Finding 3)
- This is function of parameters: $\rho/(1-\rho)>\mu\theta/(1-\theta)$

Baseline Simulation Results

- We generate earlier patters seen with size (Finding 3)
- This is function of parameters: $\rho/(1-\rho)>\mu\theta/(1-\theta)$

What Does All this Mean for Productivity and Welfare?

- Follow Basu and Fernald (2002), Basu et al. (2011) and Sandleris and Wright (2011) who derive in response to a one-time unanticipated fully transitory shock.
- We ignore changes in interest rates and asset prices and therefore arrive at this formula in our environment:

$$\Delta \ln W_t \approx \left(\Delta \ln Y_t^{VA} - s_L \Delta \ln L_t - s_K \Delta \ln K_t\right) - s_M \Delta \ln P_t^M$$

 $\approx \Delta \ln \mathbf{PR} - s_M \Delta \ln P_M$

• s_L and s_K are shares in value added and need not sum to one

What Does All this Mean for Productivity and Welfare?

• All firms face same input prices, therefore:

$$\Delta \ln \mathsf{PR} = \sum_i \omega_i \Delta \ln \mathsf{PR}_i$$

where ω_i is i's share in value added.

Applying Basu/Fernald to our model, we get:

$$\Delta \ln \mathbf{PR}_{i} = \frac{(1-\theta)}{\theta(1-\mu)} \left[\Delta \ln V_{i} + \frac{\mu\theta}{1-\mu\theta} \left(\Delta \ln X_{i} - \Delta \ln Y_{i} \right) \right] - \frac{(1-\mu\theta)}{\theta(1-\mu)} s_{L_{i}} \left(1 - \omega_{L_{p,i}} \right) \Delta \ln L_{f,i} + \Delta \ln A_{i} / (1-\mu)$$

and

$$\Delta \ln V_i \equiv s_{K_i} \Delta \ln K_i + s_{L_i} \Delta \ln L_i$$

- Consider relationship with:
 - Kohli (2004) and Kehoe and Ruhl (2008)
 - Arkolakis, Costinot, and Rodrigues Clare (2011)

What Does All this Mean for Productivity and Welfare?

• Define γ_i as firm i's input spending on domestic goods and aggregating across firms in our model:

$$\begin{split} \Delta \ln \mathbf{PR} &= \frac{\mu}{1-\mu} \frac{1-\theta}{\theta \mu} \Delta \ln V \\ &+ \frac{\mu}{1-\mu} \left[\left(\frac{1-\theta}{1-\mu\theta} - \frac{1-\gamma}{1-\mu} \right) \frac{\theta-1}{\theta} \sum_{i} \omega_{i} \Delta \ln \omega_{i} \right] \\ &+ \frac{\mu}{1-\mu} \left[\frac{1-\rho}{\rho} \left(\frac{\theta \left(1-\mu \right)}{1-\mu\theta} + \frac{\mu \left(1-\gamma \right)}{1-\mu} \right) \sum_{i} \omega_{i} \Delta \ln \gamma_{i} \right] \\ &- \frac{\mu}{1-\mu} (1-\gamma) \Delta \ln \rho_{m} \end{split}$$

Compare to case with no fixed costs and no heterogeneity:

$$\Delta \ln \mathbf{PR} = \frac{\mu}{1-\mu} \left(\frac{1-\theta}{\theta\mu} \Delta \ln V - \frac{1-\rho}{\rho} \frac{1-\theta}{1-\mu\theta} \Delta \ln \gamma \right)$$

Productivity Results

		∆ In PR	$\Delta \ln \widetilde{PR}$	Δ In W
(1)	Benchmark	-0.051	-0.062	-0.086
(2)	No Fixed Costs, Same $\Delta \ln p_m$	-0.041	-0.041	-0.065
(3)	No Fixed Costs, Same $\Delta \ln \gamma$	-0.058	-0.058	-0.095

• Standard Solow Residual: -0.030

Alternative Simulation Results

		ΔlnPR	$\Delta \ln \widetilde{\mathbf{PR}}$	Δ In W
(1)	Benchmark	-0.051	-0.062	-0.086
(4)	Adjusting For Inventories	-0.022	-0.034	-0.037
(5)	No Capital Goods	-0.031	-0.048	-0.052
(6)	No Round-About Production, Same $\Delta \ln p_m$	-0.024	-0.037	-0.050
(8)	ho=0.50	-0.151	-0.163	-0.223
(9)	$\theta = 0.90$	-0.032	-0.034	-0.062
(10)	ho= 0.50, $ heta=$ 0.90	-0.142	-0.145	-0.198

The Decline and Recovery in Argentina

Conclusion

- Large crises associated with declines in intermediate input imports and measured TFP
- Empircal characterization of trade adjustment
- Measured TFP impact can be sizeable (25 40%)
- No one shock can explain all of the TFP decline. Input trade channel can be an important factor.