Discussion of:

Productivity and Capital Allocation in Europe

by Gopinath, Kalemli-Ozcan, Karabarbounis, and Villegas-Sanchez

Brent Neiman University of Chicago

AEA Meetings 2015

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Static Misallocation (Quick Refresher)

$$y_i = z_i \left(\frac{k_i}{\alpha}\right)^{\alpha} \left(\frac{l_i}{1-\alpha}\right)^{1-\alpha}$$
$$p_i = \mu_i mc_i = \mu_i \frac{1}{z_i} R_i^{\alpha} w_i^{1-\alpha}$$

$$TFPR_i = p_i z_i = \mu_i R_i^{\alpha} w_i^{1-\alpha}$$

•
$$(R_i = R) + (w_i = w) + (\mu_i = \mu) \implies TFPR_i = TFPR$$

- Otherwise (i.e. $R_i = R(1 + \tau_i^k)) \implies TFPR_i \neq TFPR$
- Paper is about Var(In(TFPR_i)) ↑ in South, but not in North

Plan for Discussion

A really nice paper!

My discussion will focus on:

- 1 Importance of joint distribution of productivity and wedges
- Obecomposition of Var(In TFPR_i) into Var(In MRPK_i) and Var(In MRPL_i)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3 Compare *TFPR_i* dynamics in model and data

Great Data Covering Full Firm Size Distribution

- Large emphasis placed on breadth of sample
 - 99% of firms are private much broader than Compustat
 - Match nicely with size distribution from census/Eurostat
 - Convinced me they did enormous amount of careful work

- Focus on Var(ln(TFPR_i)) may overweight small firms
 - Theory says $TFPR_i = p_i z_i$ essentially scale invariant
 - $(1 + \tau_i^k)$ impacts $Var(ln(TFPR_i))$ same for big and small

• Why? Assumes joint multivariate log normality.

Great Data Covering Full Firm Size Distribution

• The exact expression for TFP is:

$$TFP^{\text{exact}} = \left[\sum_{i}^{N} \left(z_{i} \frac{T\bar{FPR}}{TFPR_{i}}\right)^{\sigma-1}\right]^{1/(\sigma-1)}$$

• Under joint log normality, it is:

$$\begin{aligned} TFP^{\text{approx}} &= \frac{1}{\sigma - 1} \left(\ln N + \ln \mathbb{E} \left(z_i^{\sigma - 1} \right) \right) \\ &- \frac{\sigma}{2} Var \left(\ln \left(TFPR_i \right) \right) - \frac{\alpha \left(1 - \alpha \right)}{2} Var \left(\ln \left(1 + \tau_i^k \right) \right) \end{aligned}$$

- Intuition?
 - Case 1: $Covar(\ln z_i, \ln(1 + \tau_i^k)) = 0$
 - Case 2: $Covar(\ln z_i, \ln(1 + \tau_i^k)) \neq 0$

Potential to Overemphasize Small Firms

- Initial distribution is joint lognormal, N = 200, only τ^k , $\sigma = 3$
- Initial 5.5943 = In $TFP^{\text{exact}} \approx \text{In } TFP^{\text{approx}} = 5.5980$

Potential to Overemphasize Small Firms

- Initial distribution is joint lognormal, N = 200, only τ^k , $\sigma = 3$
- Initial $5.5943 = \ln TFP^{\text{exact}} \approx \ln TFP^{\text{approx}} = 5.5980$
- But $-0.0001 = \Delta \ln TFP^{\text{exact}} > \Delta \ln TFP^{\text{approx}}_{\Box} = -0.0334$

Potential to Underemphasize Big Firms

- Initial distribution is joint lognormal, N = 200, only τ^k , $\sigma = 3$
- Initial $5.5943 = \ln TFP^{\text{exact}} \approx \ln TFP^{\text{approx}} = 5.5980$
- But $-0.0884 = \Delta \ln TFP^{\text{exact}} < \Delta \ln TFP^{\text{approx}} = -0.0361$

Great Data Covering Full Firm Size Distribution

- Why might this matter?
 - Measurement error bigger on small/private firms?
 - Policies and reporting incentives different? (Hsieh 2002)
 - Potentially explains sensitivity to treatment of entry/exit?
- Model has size-dependence of financial frictions and endogenously generates joint-distribution between $\ln z_i$ and $\ln(1 + \tau_i^k)$.
 - What is it in model?
 - What is it in data?
- Do I suspect this is big deal? No. Examples I showed were far from zero-mean noise. Still, easy and important to check.

Split Var(In TFPR) into Var(In MRPK) and Var(In MRPL)

 $\ln TFPR_i = \gamma + \alpha \ln MRPK_i + (1 - \alpha) \ln MRPL_i$

- Upward trend in Var(In TFPR_i) is clearly driven by upward trend in Var(In MRPK_i) and not in Var(In MRPL_i)
- Surprising and interesting, suggestive of key shocks, one of coolest results in paper!
- Clear and compelling split between South and North

• Nicely motivates focus on capital in model

Split Var(In TFPR) into Var(In MRPK) and Var(In MRPL)

• Implies heterogeneous markups (or changes in them) aren't the story.

$$MRPL_{i} = \frac{1}{\mu_{i}} \alpha \frac{p_{i}y_{i}}{l_{i}}$$
$$MRPK_{i} = \frac{1}{\mu_{i}} (1-\alpha) \frac{p_{i}y_{i}}{k_{i}}$$

Authors should emphasize this more.

- Peters (2013) generates what would look like misallocation in CES models with variable markups
- Fernald and Neiman (2011) model impact of dynamic misallocation from variable markups on TFP in Singapore
- Surprising? External validity?
- Again, elevates importance of approximation...

Model (but with $b_{i,t+1} \le \theta k_{i,t+1}$) yields user cost expression (when constraints binding):

$$u_{i,t} = \mathbb{E}\left[MRPK_{i,t+1}\right] = (r_{t+1} + \delta) \\ + (1 - \theta) \frac{(1 - \mathbb{E}\left[m_{i,t+1}\right](1 + r_{t+1}))}{[m_{i,t+1}]} \\ + \frac{\partial AC_{i,t}}{\partial k_{i,t+1}} \frac{1}{\mathbb{E}\left[m_{i,t+1}\right]} + \frac{\partial AC_{i,t+1}}{\partial k_{i,t+1}}$$

• Risk, financial frictions, and adjustment costs do the work

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Model (but with $b_{i,t+1} < \theta k_{i,t+1}$) yields user cost expression (when constraints binding):

 $u_{i,t} = \mathbb{E}[MRPK_{i,t+1}] = (r_{t+1} + \delta) + (1 - \theta) \frac{(1 - \mathbb{E}[m_{i,t+1}](1 + r_{t+1}))}{[m_{i,t+1}]} + 0$ (Without Adjustment Costs)

• Risk, financial frictions, and adjustment costs do the work

• Kill Adjustment Costs

Model (but with $b_{i,t+1} < \theta k_{i,t+1}$) yields user cost expression (when constraints binding):

 $u_{i,t} = \mathbb{E}[MRPK_{i,t+1}] = (r_{t+1} + \delta)$ +0 (\theta = 1 Implies Borrowing Unconstrained) +0 (Without Adjustment Costs)

• Risk, financial frictions, and adjustment costs do the work

- Kill Adjustment Costs
- Kill Borrowing Constraints

Model (but with $b_{i,t+1} < \theta k_{i,t+1}$) yields user cost expression (when constraints binding):

 $u_{i,t} = MRPK_{i,t+1} = (r_{t+1} + \delta) \text{ (If No Risk)}$ $+0 (\theta = 1 \text{ Implies Borrowing Unconstrained})$ +0 (Without Adjustment Costs)

• Risk, financial frictions, and adjustment costs do the work

- Kill Adjustment Costs
- Kill Borrowing Constraints
- Kill <mark>Risk</mark>

- Nice dynamics that I think are missing from much of misallocation literature
- Opportunity to use panel structure of data and relate to dynamics in model
- How persistent is a firm's TFPR in the model? In the data?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Spain's entry to Euro Zone

- Authors represent inflows to Spain with decline in interest rate. Very cool/important application.
- Even from perspective of model, didn't other important things occur in tandem?
 - Structural change? Authors capture *within* sector dispersion and explain nearly all for Spain. Very different from between-sector stories about tradable/non-tradable.
 - FX-driven relative prices?
 - Trade-induced changes in market shares?
 - VAT changes?
- How think about capital inflows to U.S. over same period? Different only due to initial conditions, or average productivity growth? Comparative statics on the model would help.

Conclusion

- Great paper! Helpful next step in misallocation literature
- Adds quantative rigor to familiar "stories" about entry into euro zone
- Can be strengthened by:
 - 1 Thinking more about size-wedge joint distribution,
 - 2 Highlighting that markups aren't doing anything,
 - **3** Using model to test dynamic behavior of wedges

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <